Numerical Differentation and Integration
:material-circle-edit-outline: 约 87 个字 :material-image-multiple-outline: 2 张图片 :material-clock-time-two-outline: 预计阅读时间 1 分钟
4.1 Numerical Differentiation¶
- forward: \(f'(x)\approx\frac{f(x+h)-f(x)}{h}\)
- backward: \(f'(x)\approx\frac{f(x)-f(x-h)}{h}\)
- to calculate the differentiation of \(f(x)\) at \(x\), we need a polyminial \(P(x)\) that passes through the points(at least) \((x-h,f(x-h)),(x,f(x)),(x+h,f(x+h))\)
- Therefore, lagrange interpolation can be used
Problems might occur
4.3 Elements of Numerical Integration¶
- Approximate \(I=\int_{a}^{b}f(x)dx\)
- we might use the interpolated polyminial to replace \(f(x)\)