Skip to content

Numerical Differentation and Integration

:material-circle-edit-outline: 约 87 个字 :material-image-multiple-outline: 2 张图片 :material-clock-time-two-outline: 预计阅读时间 1 分钟

4.1 Numerical Differentiation

  • forward: \(f'(x)\approx\frac{f(x+h)-f(x)}{h}\)
  • backward: \(f'(x)\approx\frac{f(x)-f(x-h)}{h}\)
  • to calculate the differentiation of \(f(x)\) at \(x\), we need a polyminial \(P(x)\) that passes through the points(at least) \((x-h,f(x-h)),(x,f(x)),(x+h,f(x+h))\)
  • Therefore, lagrange interpolation can be used
    alt text

Problems might occur

alt text

4.3 Elements of Numerical Integration

  • Approximate \(I=\int_{a}^{b}f(x)dx\)
  • we might use the interpolated polyminial to replace \(f(x)\)